home *** CD-ROM | disk | FTP | other *** search
/ Internet Info 1994 March / Internet Info CD-ROM (Walnut Creek) (March 1994).iso / answers / rec / puzzles / archive / series < prev    next >
Text File  |  1993-08-17  |  17KB  |  540 lines

  1. Newsgroups: rec.puzzles,news.answers,rec.answers
  2. Path: senator-bedfellow.mit.edu!bloom-beacon.mit.edu!spool.mu.edu!howland.reston.ans.net!europa.eng.gtefsd.com!uunet!questrel!chris
  3. From: chris@questrel.com (Chris Cole)
  4. Subject: rec.puzzles Archive (series), part 34 of 35
  5. Message-ID: <puzzles/archive/series_745653851@questrel.com>
  6. Followup-To: rec.puzzles
  7. Summary: This is part of an archive of questions
  8.  and answers that may be of interest to
  9.  puzzle enthusiasts.
  10.  Part 1 contains the index to the archive.
  11.  Read the rec.puzzles FAQ for more information.
  12. Sender: chris@questrel.com (Chris Cole)
  13. Reply-To: archive-comment@questrel.com
  14. Organization: Questrel, Inc.
  15. References: <puzzles/archive/Instructions_745653851@questrel.com>
  16. Date: Wed, 18 Aug 1993 06:07:01 GMT
  17. Approved: news-answers-request@MIT.Edu
  18. Expires: Thu, 1 Sep 1994 06:04:11 GMT
  19. Lines: 518
  20. Xref: senator-bedfellow.mit.edu rec.puzzles:25021 news.answers:11541 rec.answers:1941
  21.  
  22. Archive-name: puzzles/archive/series
  23. Last-modified: 17 Aug 1993
  24. Version: 4
  25.  
  26.  
  27. ==> series/series.00.p <==
  28. Are "complete this series" problems well defined?
  29.  
  30. ==> series/series.00.s <==
  31. Since there are infinitely many formulas that will fit any finite
  32. series, many people object that such problems have no good answer.
  33. But isn't this a special case of the general observation that theory
  34. is underdetermined by experience (in other words, that there are a
  35. lot of world views that are consistent with all the facts that we
  36. know)?  And if so, doesn't this objection really apply to all puzzles?
  37. Isn't it just more obvious in the case of series puzzles?
  38.  
  39. As a long-time observer of rec.puzzles nit-picking, I have never seen
  40. a puzzle answer that could not be challenged.  The list of assumptions
  41. made in solving any puzzle is neverending.  Luckily, most of us share
  42. all or nearly all of these assumptions, so that we can agree on an
  43. answer when we see it.
  44.  
  45. All of this has a lot to do with topics such as computational
  46. complexity, algorithmic compressibility, Church's thesis, intelligence
  47. and life.
  48.  
  49.  
  50. ==> series/series.01.p <==
  51. M, N, B, D, P ?
  52.  
  53. ==> series/series.01.s <==
  54. T.  If you say the sounds these letters make out loud, you will see
  55. that the next letter is T.  The letters are in the order of where the
  56. sounds are formed in the mouth, from back to front.
  57.  
  58. ==> series/series.02.p <==
  59. H, H, L, B, B, C, N, O, F ?
  60.  
  61. ==> series/series.02.s <==
  62. Answer 1:  N, N, M, A  The first letters of the symbols for the elements.
  63. Answer 2:  N, S, M, A  The first letters of the names of the elements.
  64.  
  65. ==> series/series.03.p <==
  66. W, A, J, M, M, A, J?
  67.  
  68. ==> series/series.03.s <==
  69. J, V, H, T, P, T, F, P, B, L.  Presidents of the US.
  70.  
  71. ==> series/series.03a.p <==
  72. G, J, T, J, J, J, A, M, W, J, J, Z, M, F, J, ?
  73.  
  74.  
  75. ==> series/series.03a.s <==
  76. G, J, T, J, J, J, A, M, W, J, J, Z, M, F, J, A.  US Presidents' first names.
  77.  
  78. ==> series/series.03b.p <==
  79. A, J, B, C, G, T, C, V, J, T, D, F, K, B, H, ?
  80.  
  81.  
  82. ==> series/series.03b.s <==
  83. A, J, B, C, G, T, C, V, J, T, D, F, K, B, H, J.  US Vice Presidents.
  84.  
  85. ==> series/series.03c.p <==
  86. M, A, M, D, E, L, R, H, ?
  87.  
  88.  
  89. ==> series/series.03c.s <==
  90. M, A, M, D, E, L, R, H, A.  US Presidents' wives' first names.
  91.  
  92. ==> series/series.04.p <==
  93. A, E, H, I, K, L, ?
  94.  
  95. ==> series/series.04.s <==
  96. M, N, O, P, U, W.  Letters in the Hawaiian alphabet.
  97.  
  98. ==> series/series.05.p <==
  99. A B C D E F G H?
  100.  
  101. ==> series/series.05.s <==
  102. M.  The names of the cross-streets travelling west on (say)
  103. Commonwealth Avenue from Boston's Public Garden: Arlington, Berkeley,
  104. Clarendon, Dartmouth, Exeter, Fairfield, Gloucester, Hereford,
  105. Massachusetts Ave.  The alphabet does continue in the Fenway; after
  106. Massachuetts Ave., there is Charlesgate, and then Ipswich, Jersey,
  107. Kilmarnock.
  108.  
  109. ==> series/series.06.p <==
  110. Z, O, T, T, F, F, S, S, E, N?
  111.  
  112. ==> series/series.06.s <==
  113. T.  The name of the integers starting with zero.
  114.  
  115. ==> series/series.06a.p <==
  116. F, S, T, F, F, S, ?
  117.  
  118. ==> series/series.06a.s <==
  119. The words "first", "second", "third", etc.  The same as the previous from this
  120. point on.
  121.  
  122. ==> series/series.07.p <==
  123. 1, 1 1, 2 1, 1 2 1 1, ...
  124.  
  125. What is the pattern and asymptotics of this series?
  126.  
  127. ==> series/series.07.s <==
  128. Each line is derived from the last by the transformation (for example)
  129.  
  130. ... z z z x x y y y ... ->
  131. ... 3 z 2 x 3 y ...
  132.  
  133. John Horton Conway analyzed this in "The Weird and Wonderful Chemistry
  134. of Audioactive Decay" (T M Cover & B Gopinath (eds) OPEN PROBLEMS IN
  135. COMMUNICATION AND COMPUTATION, Springer-Verlag (1987)).  You can also
  136. find his most complete FRACTRAN paper in this collection.
  137.  
  138. First, he points out that under this sequence, you frequently get
  139. adjacent subsequences XY which cannot influence each other in any
  140. future derivation of the sequence rule.  The smallest such are
  141. called "atoms" or "elements".  As Conway claims to have proved,
  142. there are 92 atoms which show up eventually in every sequence, no
  143. matter what the starting value (besides <> and <22>), and always in
  144. the same non-zero limiting proportions.
  145.  
  146. Conway named them after some other list of 92 atoms.  As a puzzle,
  147. see if you can recreate the list from the following, in decreasing
  148. atomic number:
  149.  
  150. U Pa Th Ac Ra Fr Rn Ho.AT Po Bi Pm.PB Tl Hg Au Pt Ir Os Re Ge.Ca.W Ta
  151. HF.Pa.H.Ca.W Lu Yb Tm ER.Ca.Co HO.Pm Dy Tb Ho.GD EU.Ca.Co Sm PM.Ca.Zn
  152. Nd Pr Ce LA.H.Ca.Co Ba Cs Xe I Ho.TE Eu.Ca.SB Pm.SN In Cd Ag Pd Rh
  153. Ho.RU Eu.Ca.TC Mo Nb Er.ZR Y.H.Ca.Tc SR.U Rb Kr Br Se As GE.Na Ho.GA
  154. Eu.Ca.Ac.H.Ca.ZN Cu Ni Zn.CO Fe Mn CR.Si V Ti Sc Ho.Pa.H.CA.Co K Ar
  155. Cl S P Ho.SI Al Mg Pm.NA Ne F O N C B Be Ge.Ca.LI He Hf.Pa.H.Ca.Li
  156.  
  157. Uranium is 3, Protactinium is 13, etc.  Rn => Ho.AT means the following:
  158. Radon forms a string that consists of two atoms, Holmium on the left,
  159. and Astatine on the right.  I capitalize the symbol for At to remind
  160. you that Astatine, and not Holmium, is one less than Radon in atomic
  161. number.  As a check, against you or me making a mistake, Hf is 111xx,
  162. Nd is 111xxx, In and Ni are 111xxxxx, K is 111x, and H is 22.
  163.  
  164. Next see if you can at least prove that any atom other than Hydrogen,
  165. eventually (and always thereafter) forms strings containing all 92 atoms.
  166.  
  167. The grand Conway theorem here is that every string eventually forms (within
  168. a universal time limit) strings containing all the 92 atoms in certain
  169. specific non-zero limiting proportions, and that digits N greater than 3
  170. are eventually restricted to one of two atomic patterns (ie, abc...N and
  171. def...N for some {1,2,3} sequences abc... and def...), which Conway calls
  172. isotopes of Np and Pu.  (For N=2, these are He and Li), and that these
  173. transuranic atoms have a zero limiting proportion.
  174.  
  175. The longest lived exotic element is Methuselum (2233322211N) which takes
  176. about 25 applications to reduce to the periodic table.
  177.  
  178. -Matthew P Wiener (weemba@libra.wistar.upenn.edu)
  179.  
  180. Conway gives many results on the ultimate behavior of strings under
  181. this transformation: for example, taking the sequence derived from 1
  182. (or any other string except 2 2), the limit of the ratio of length of
  183. the (n+1)th term to the length of the nth term as n->infinity is a 
  184. fixed constant, namely
  185.  
  186.             1.30357726903429639125709911215255189073070250465940...
  187.  
  188. This number is from Ilan Vardi, "Computational Recreations in Mathematica",
  189. Addison Wesley 1991, page 13.
  190.  
  191. Another sequence that is related but not nearly as interesting is:
  192.  
  193. 1, 11, 21, 1112, 3112, 211213, 312213, 212223, 114213, 31121314, 41122314,
  194.     31221324, 21322314,
  195.  
  196. and 21322314 generates itself, so we have a cycle.
  197.  
  198. ==> series/series.08a.p <==
  199. G, L, M, B, C, L, M, C, F, S, ?
  200.  
  201. ==> series/series.08a.s <==
  202. US Army officer ranks, descending.
  203.  
  204. ==> series/series.08b.p <==
  205. A, V, R, R, C, C, L, L, L, E, ?
  206.  
  207. ==> series/series.08b.s <==
  208. US Navy officer ranks, descending.
  209.  
  210. ==> series/series.09a.p <==
  211. S, M, S, S, S, C, P, P, P, ?
  212.  
  213. ==> series/series.09a.s <==
  214. Army non-comm ranks, descending.
  215.  
  216. ==> series/series.09b.p <==
  217. M, S, C, P, P, P, S, S, S, ?
  218.  
  219. ==> series/series.09b.s <==
  220. Navy non-comm ranks, descending.
  221.  
  222. ==> series/series.10.p <==
  223. D, P, N, G, C, M, M, S, ?
  224.  
  225. ==> series/series.10.s <==
  226. N, V, N, N, R.  US States in Constitution ratification order.
  227.  
  228. ==> series/series.11.p <==
  229. R O Y G B ?
  230.  
  231. ==> series/series.11.s <==
  232. V or I V.  Colors.
  233.  
  234. ==> series/series.12.p <==
  235. A, T, G, C, L, ?
  236.  
  237. ==> series/series.12.s <==
  238. V, L, S, S, C, A, P.  Zodiacal signs.
  239.  
  240. ==> series/series.13.p <==
  241. M, V, E, M, J, S, ?
  242.  
  243. ==> series/series.13.s <==
  244. U, N, P or U, P, N.  Names of the Planets.
  245.  
  246. ==> series/series.14.p <==
  247. A, B, D, O, P, ?
  248.  
  249. ==> series/series.14.s <==
  250. Q, R.  Only letters with an inside as printed. 
  251.  
  252. ==> series/series.14a.p <==
  253. A, B, D, E, G, O, P, ?
  254.  
  255. ==> series/series.14a.s <==
  256. Q.  Letters with insides in cursive form.
  257.  
  258. ==> series/series.15.p <==
  259. A, E, F, H, I, ?
  260.  
  261. ==> series/series.15.s <==
  262. L, M, N, O, R, S, U, X.  Letters whose English names start with vowels.
  263.  
  264. ==> series/series.16.p <==
  265. A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, X, Y?
  266.  
  267. ==> series/series.16.s <==
  268. Z.  Letters whose English names have one syllable.
  269.  
  270. ==> series/series.17.p <==
  271. T, P, O, F, O, F, N, T, S, F, T, F, E, N, S, N?
  272.  
  273. ==> series/series.17.s <==
  274. T, T, T, E, F, S.  Digits of Pi.
  275.  
  276. ==> series/series.18.p <==
  277. 10, 11, 12, 13, 14, 15, 16, 17, 20, 22, 24, ___ , 100, 121, 10000
  278.  
  279. ==> series/series.18.s <==
  280.  10, 11, 12, 13, 14, 15, 16, 17, 20, 22, 24, 31 , 100, 121, 10000
  281.  
  282. Sixteen in base n for n=16, 15, ..., 2.
  283.  
  284. ==> series/series.19.p <==
  285. 0 01 01011 0101101011011 0101101011011010110101101101011011 etc.
  286.  
  287. Each string is formed from the previous string by substituting '01' for '0'
  288. and '011' for '1' simultaneously at each occurance.
  289. Notice that each string is an initial substring of the previous string so
  290. that we may consider them all as initial substrings of an infinite string.
  291. The puzzle then is, given n, determine if the nth digit is 0 or 1 without
  292. having to construct all the previous digits.  That is, give a non-recursive
  293. formula for the nth digit.
  294.  
  295. ==> series/series.19.s <==
  296. Let G equal the limit string generated by the above process and define
  297. the string F by
  298.  
  299. F[0] = "0",
  300. F[n] = "1" if n = floor(phi*m) for some positive integer m,
  301. F[n] = "0" if n = floor(phi^2*m) for some positive integer m,
  302.  
  303. where floor(x) is the greatest integer =< x and phi = (1 + \/5)/2;
  304. I claim that F = G.
  305.  
  306.  
  307. I will try to motivate my solution.  Let g[0]="0" and define g[n+1]
  308. to be the string that results from replacing "0" in g[n] with "01"
  309. and "1" with "011"; furthermore, let s(n) and t(n) be the number of
  310. "0"'s and "1"'s in g[n], respectively.  Note that we have the
  311. following recursive formulas : s(n+1) = s(n) + t(n) and t(n+1) =
  312. s(n) + 2t(n).  I claim that s(n) = Fib(2n-1) and t(n) = Fib(2n),
  313. where Fib(m) is the mth Fibonacci number (defined by Fib(-1) = 1,
  314. Fib(0) = 0, Fib(n+1) = Fib(n) + Fib(n-1) for n>=0); this is easily
  315. established by induction.  Now noting that Fib(2n)/Fib(2n-1) -> phi
  316. as n -> infinity, we see that if the density of the "0"'s and "1"'s
  317. exists, they must be be 1/phi^2 and 1/phi, respectively.  What is
  318. the simplest generating sequence which has this property?  Answer:
  319. the one given above.
  320.  
  321.  
  322. Proof:  We start with
  323.  
  324. Beatty's Theorem: if a and b are positive irrational numbers such
  325. that 1/a + 1/b = 1, then every positive integer has a representation
  326. of the form floor(am) or floor(bm) (m a positive integer), and this
  327. representation is unique.
  328.  
  329. This shows that F is well-defined.  I now claim that
  330.  
  331. Lemma: If S(n) and T(n) (yes, two more functions; apparently today's
  332. the day that functions have their picnic) represent the number of
  333. "0"'s and "1"'s in the initial string of F of length n, then S(n)
  334. = ceil(n/phi^2) and T(n) = floor(n/phi) (ceil(x) is the smallest
  335. integer >= x).
  336.  
  337. Proof of lemma: using the identity phi^2 = phi + 1 we see that S(n)
  338. + T(n) = n, hence for a given n either S(n) = S(n-1) + 1 or T(n) =
  339. T(n-1) + 1.  Now note that if F[n-1]="1" ==> n-1 = floor(phi*m) for
  340. some positive integer m and since phi*m-1 < floor(phi*m) < phi*m ==>
  341. m-1/phi < (n-1)/phi < m ==> T(n) = T(n-1) + 1.   To finish, note that
  342. if F[n-1]="0" ==> n-1 = floor(phi^2*m) for some positive integer m
  343. and since phi^2*m-1 < floor(phi^2*m) < phi^2*m ==> m-1/phi^2 <
  344. (n-1)/phi^2 < m ==> S(n) = S(n-1) + 1.  Q.E.D.
  345.  
  346. I will now show that F is invariant under the operation of replacing
  347. "0" with "01" and "1" with "011"; it will then follow that F=G.
  348. Note that this is equivalent to showing that F[2S(n) + 3T(n)]
  349. = "0", F[2S(n) + 3T(n) + 1] = "1", and that if n = [phi*m] for some
  350. positive integer m, then F[2S(n) + 3T(n) + 2] = "1".  One could
  351. waste hours trying to prove some fiendish identities; watch how
  352. I sidestep this trap.  For the first part, note that by the above
  353. lemma F[2S(n) + 3T(n)] = F[2*ceil(n/phi^2) + 3*floor(n/phi)] =
  354. F[2n + floor(n/phi)] = F[2n + floor(n*phi-n)] = F[floor(phi*n+n)]
  355. = F[floor(phi^2*n)] ==> F[2S(n) + 3T(n)] = "0".  For the second, it
  356. is easy to see that since phi^2>2, if F[m]="0" ==> F[m]="1" hence
  357. the first part implies the second part.  Finally, note that if n =
  358. [phi*m] for some positive integer m, then F[2S(n) + 3T(n) + 3] =
  359. F[2S(n+1) + 3T(n+1)] = "0", hence by the same reasoning as above
  360. F[2S(n) + 3T(n) + 2] = "1".
  361.  
  362. Q.E.D.
  363.  
  364.     -- clong@remus.rutgers.edu (Chris Long)
  365.  
  366. ==> series/series.20.p <==
  367. 1 2 5 16 64 312 1812 12288
  368.  
  369. ==> series/series.20.s <==
  370. ANSWER: 95616
  371.     The sum of factorial(k)*factorial(n-k) for k=0,...,n.
  372.  
  373. ==> series/series.21.p <==
  374. 5, 6, 5, 6, 5, 5, 7, 5, ?
  375.  
  376. ==> series/series.21.s <==
  377. The number of letters in the ordinal numbers.
  378.  
  379. First   5
  380. Second  6
  381. Third   5
  382. Fourth  6
  383. Fifth   5
  384. Sixth   5
  385. Seventh 7
  386. Eighth  6
  387. Ninth   5
  388. etc.
  389.  
  390. ==> series/series.22.p <==
  391. 3 1 1 0 3 7 5 5 2 ?
  392.  
  393. ==> series/series.22.s <==
  394. ANSWER: 4
  395.     The digits of pi expressed in base eight.
  396.  
  397. ==> series/series.23.p <==
  398. 22 22 30 13 13 16 16 28 28 11 ?
  399.  
  400. ==> series/series.23.s <==
  401. ANSWER: 15
  402.     The birthdays of the Presidents of the United States.
  403.  
  404.  
  405. ==> series/series.24.p <==
  406. What is the next letter in the sequence: W, I, T, N, L, I, T?
  407.  
  408. ==> series/series.24.s <==
  409. S.  First letters of words in question.
  410.  
  411. ==> series/series.25.p <==
  412. 1 3 4 9 10 12 13 27 28 30 31 36 37 39 40 ?
  413.  
  414. ==> series/series.25.s <==
  415. 1 3 4 9 10 12 13 27 28 30 31 36 37 39 40 ...
  416. Positive integers in binary, treated as a base 3 number and converted
  417. to decimal.
  418.  
  419. ==> series/series.26.p <==
  420. 1 3 2 6 7 5 4 12 13 15 14 10 11 9 8 24 25 27 26 ?
  421.  
  422. ==> series/series.26.s <==
  423. 1 3 2 6 7 5 4 12 13 15 14 10 11 9 8 24 25 27 26 ...
  424. Positive integers in binary, for each 1 bit (not changed) flip the next bit.
  425. This can also be phrased in reversing sequences of numbers.
  426. More simply, just the integers in reflective-Gray-code order.
  427.  
  428. ==> series/series.27.p <==
  429. 0 1 1 2 1 2 1 3 2 2 1 3 1 2 2 4 1 3 1 3 2 2 1 4 2 ?
  430.  
  431. ==> series/series.27.s <==
  432. 2 3 3 1 3 1 5 2 2 2 4 1 2 2 4 1 3 1 3 3 2 1 5 2 3 2 3 1 4 2 4 2 2 1 ...
  433.  
  434. Number of factors in prime factorization of positive integers.
  435.  
  436. ==> series/series.28.p <==
  437. 0 2 3 4 5 5 7 6 6 7 11 7 13 9 8 8 17 8 19 9 10 13 23 9 10 ?
  438.  
  439. ==> series/series.28.s <==
  440. 15 9 11 29 10 31 10 14 19 12 10 37 21 16 11 41 12 43 15 11 25 47 11 14 12 ...
  441.  
  442. Sum of factors in prime factorization of positive integers.
  443.  
  444. ==> series/series.29.p <==
  445. 1 1 2 1 2 2 3 1 2 2 3 2 3 3 4 1 2 2 3 2 3 3 4 2 3 3 4 3 4 ?
  446.  
  447. ==> series/series.29.s <==
  448. 1 1 2 1 2 2 3 1 2 2 3 2 3 3 4 1 2 2 3 2 3 3 4 2 3 3 4 3 4 ...
  449. The number of 1s in the binary expansion of the positive integers.
  450.  
  451. ==> series/series.30.p <==
  452. I I T Y W I M W Y B M A D 
  453.  
  454. ==> series/series.30.s <==
  455. ? (first letters of "If I tell you what it means will you buy me a drink?")
  456.  
  457. ==> series/series.31.p <==
  458. 6 2 5 5 4 5 6 3 7 
  459.  
  460. ==> series/series.31.s <==
  461. 6. The number of segments on a standard calculator display it takes
  462. to represent the digits starting with 0.
  463.   _       _   _       _   _   _   _   _
  464.  | |   |  _|  _| |_| |_  |_    | |_| |_|
  465.  |_|   | |_   _|   |  _| |_|   | |_|  _|
  466.  
  467. ==> series/series.32.p <==
  468. 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1
  469.  
  470. ==> series/series.32.s <==
  471. 0 -> 1   01 -> 10   0110 -> 1001   01101001 ->  10010110
  472. Recursively append the inverse.
  473.  
  474. This sequence is known as the Morse-Thue sequence.  It can be defined
  475. non-recursively as the nth term is the mod 2 count of 1s in n written
  476. in binary:
  477.         0->0 1->1 10->1 11->0 100->1 101->0 110->0 111->1 etc. 
  478.  
  479. Reference:
  480.     Dekking, et. al., "Folds! I,II,III"
  481.     The Mathematical Intelligencer, v4,#3,#4,#4.
  482.  
  483. ==> series/series.33.p <==
  484. 2 12 360 75600
  485.  
  486. ==> series/series.33.s <==
  487. 2         = 2^1
  488. 12        = 2^2 * 3^1
  489. 360       = 2^3 * 3^2 * 5^1
  490. 75600     = 2^4 * 3^3 * 5^2 * 7^1
  491. 174636000 = 2^5 * 3^4 * 5^3 * 7^2 * 11^1
  492.  
  493. ==> series/series.34.p <==
  494. 3 5 4 4 3 5 5 4 3
  495.  
  496. ==> series/series.34.s <==
  497. The number of letters in the English words for the counting numbers.
  498.  
  499. ==> series/series.35.p <==
  500. 1 2 3 2 1 2 3 4 2 1 2 3 4 2 2 3
  501.  
  502. ==> series/series.35.s <==
  503. The number of letters in the Roman numeral representation of the numbers.
  504.  
  505. ==> series/series.36.p <==
  506. ETIANMSURWDKGO
  507.  
  508. ==> series/series.36.s <==
  509. HVF and U with an umlaut.
  510.  
  511. The letters are sorted by their international Morse code representations:
  512.  
  513. E .
  514. T -
  515.  
  516. I ..
  517. A .-
  518. N -.
  519. M --
  520.  
  521. S ...
  522. U ..-
  523. etc.
  524.  
  525.  
  526. ==> series/series.37.p <==
  527. 10^3 10^9 10^27 10^2 0 4 8 3
  528.  
  529.  
  530. ==> series/series.37.s <==
  531. 10^3  = one thousAnd
  532. 10^9  = one Billion
  533. 10^27 = one oCtillion
  534. 10^2  = one hunDreD
  535. 0     = zEro 
  536. 4     = Four
  537. 8     = eiGht
  538. 3     = tHree 
  539. 5     = fIve
  540.